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ABSTRACT: This paper presents a simulation method using a programming language called R to help students 

understand the concepts of sampling distributions and the central limit theorem. We simulate an approximation of a 

sampling distribution by taking 1000 random samples from different populations, calculating the mean of each sample, 

and creating histograms to display the distributions of the sample mean. Normal probability plots of the sample mean 

are also created as a second tool for understanding the distribution of the sample mean. The sampling distribution of the 

sample proportion is also studied for varying sample sizes. Students will observe the effects of sample size on the shape 

and spread of the approximate sampling distribution by varying the sample size. 
 

1. INTRODUCTION 

Students in statistics classes often struggle to understand fundamental concepts such as 

sampling distributions, central limit theorem, confidence intervals, and hypothesis testing. Instead of 

understanding fundamental concepts and applying statistical procedures properly, many students 

focus on memorizing methods of performing calculations using calculators or software.  This 

approach does not provide a good foundation for their future courses, conducting research, analyzing 

data, and making correct conclusions.  The traditional way of teaching using book and lecture based 

instruction does not give a good understanding of the concepts to many students. Advances in 

technology have enabled instructors to experiment with different teaching methods. Simulations, 

along with the help of computers can be a very effective tool in gaining a good grasp of these 

concepts. One of the most challenging aspects of teaching and learning statistics is that many 

statistical concepts are based on the issue of what would happen if a random process such as random 

sampling from a population were to be repeated a large number of times. This abstract notion is very 

difficult for many students to grasp. Technology provides the opportunity to make this abstract idea 

more concrete by enabling students to repeat such random processes a very large number of times 

and describe their observations first hand. Furthermore, it is difficult for students in introductory level 

courses to understand the importance of technical conditions, such as normality assumptions and 

sample size requirements. Technology can be used to verify that the given data follow certain 

distributions. The simulation can be an effective tool in identifying the necessary sample sizes for 

certain situations. The p-value concept of hypothesis testing is also challenging for students to 

undersand. The simulation approach can be used to repeat the sampling process and estimate the p-

value percentage to visualize and understand the concept. In many statistics lessons, we can use 

simulations to perform these types of experiments.  

The American Statistical Association has published the Guidelines for Assessment and 

Instruction in Statistics Education (GAISE) [7] in order to improve learning. These guidelines 

recommend the active learning of concepts as an approach to teach and learn statistics.  Simulations 

performed both manually and using computers are recommended in the GAISE report as a useful 

tool. In recent years, there has been much interest in the use of simulations to teach fundamental 

statistical concepts.  Mills [10] has given a comprehensive review of the literature of computer 

simulation methods used in all areas of statistics to help students understand difficult concepts. Cobb 

[5] noted that incorporating computer simulation techniques to illustrate the key concepts and to allow 

mailto:lchandra@jjay.cuny.edu


The Electronic Journal of Mathematics and Technology, Volume 12, Number 2, ISSN 1933-2823 

 

310 
 

students to discover important principles themselves enhances their knowledge.  For more examples 

of the use of simulation to teach statistics see [1], [2], [3], [4], and [8].  

R is now a popular tool for statistics education. Many introductory and higher level statistics 

instructors are now using R to teach and perform statistical calculation. Although it is a bit 

challenging to write statements in the command line, R can be used in conducting simulation 

effectively. R can easily generate random samples from a variety of probability distributions. 

Hallgren [9] has used R in data analysis, estimating statistical power, and constructing confidence 

intervals of parameters through bootstrapping. He noted that simulation methods are flexible and can 

be applied to a number of problems to obtain answers that may not be possible to derive through other 

approaches. A valuable introduction to R for introductory statistics is given in Dalgaard [6].  

In this paper, we describe how to use R in an introductory statistics class to understand the 

concepts of sampling distribution of the mean. We generate random samples from different types of 

populations including more skewed distributions to study the properties of the central limit theorem. 

R codes are used to simulate this process for different sample sizes. Furthermore, we investigate the 

properties of sampling distribution of sample proportion through simulation process. Results of a 

survey of students’ opinions on using the simulation approach and the comparison of two approaches 

of presenting course materials are also given. 

In section 2, we give a brief overview of R and its’ commands. In sections 3 and 4, we 

demonstrate the simulation of sampling distribution of the mean and the proportion. Section 5 gives 

a survey of student opinions on the simulation method and a comparison of two methods of presenting 

course materials. We end the paper in section 6 with some concluding remarks.   

   

2. BRIEF OVERVIEW OF R AND SOME R COMMANDS 
R is a free software environment used for working with data. R can be used to create 

sophisticated graphs, carry out statistical analyses, and run simulations. It is also a programming 

language with a set of built-in-functions. With some knowledge on coding, students can write their 

own codes for statistical computations. For computationally intensive tasks, one can incorporate 

functions written in others languages such as C, C++, and FORTRAN. R compiles and runs on 

Windows, MacOS, and a  wide variety of UNIX platforms. The examples of R used in this paper 

come from the most recent version of R , R 3.4.2. R is available from http://www.r-project.org. To 

install R 3.4.2 on your operating system, download R from the site above using the closest mirror site 

to your location and choose the appropriate link for your operating system.   

R is a relatively simple syntax-driven and case-sensitive language. Even though the syntax 

for writing instructions may be somewhat difficult initially, most students with little or no prior 

programming experience have become comfortable using R. R is an object-oriented program that 

works with data structures such as vectors (one dimensional array) and data frames (two dimensional 

arrays). A vector contains a list of values.  When R is started, we will see a window that is called the 

R console. This is where we type our commands and see the text results. Graphics appear in a separate 

window.  The > is called the prompt, where R commands are written. To quit R we type > q( ).  

R can be used as a calculator. At the prompt, we enter the mathematical expression and  by 

hitting “enter”, it will calculate the result and display it. The standard arithmetic operators ‘+, -, *,’ 

and ‘/’ are used in expressions and ‘^’ is used for exponentiation. The following example 

demonstrates this:  

 

http://www.r-project.org/
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> 2*3 -10 

[1] -4  

The results of a calculation can be assigned to a variable (object in R) using <- or =. In this paper, 

we will use <-.  Even though we can work with single numbers (scalars), R is primarily designed to 

work with vectors and functions. In R, a vector is a sequence of data values of the same type.  The 

function, c, is used to create vectors from scalars. The following statement creates a vector:    

 
> x <- c(2,4,6,8,0) 

> x 

[1] 2 4 6 8 10 

Once we have a vector of numbers, we can apply built-in functions to get useful statistical 

summaries and visual displays. R also provides functions for generating random samples from 

various probability distributions.  

Control Structures 

R has the standard control structures such as if, while, and for, which can be used to control 

the flow of an R code. We will demonstrate the use of control structures in R using the following 

code segment. Let’s assume that we have stored 1000 numbers in the vector named x. The 

following code will compute the average of the nonnegative numbers in vector x. The symbol # is 

used to write comments. 

> total <- 0         # variable total initialized to 0 

> count <- 0            # variable count initialized to 0 

> for(i in 1:1000) 

+  { 

+    if (x[i] >= 0) 

+     { 

+      count <- count +1    # count the positive values 

+      total <- total + x[i]    # add the positive values 

+     }   

+  } 

> average <- total/count  # compute the average 

 

In the above code segment, the for loop iterates 1000 times, selecting only nonnegative numbers 

using the  if statement. It computes the average as well. The variable named count counts the 

number of nonnegative numbers stored in x.  We will use the control structures when we discuss 

simulations in the following sections.  

 

3. SIMULATION OF SAMPLING DISTRIBUTION OF MEAN 

It is important that students understand the concepts behind sampling distributions and how 

they apply towards making statistical inferences. Sampling distributions are important because 

inferential statistics are based on them. Inferential statistics is about drawing conclusions about the 

population based on sample data. The sampling distribution of the mean is the probability distribution 

of the sample mean based on all possible simple random samples of the same size from the same 

population.  The sampling distribution of the mean has the following properties: 

 The mean of all sample means,
x

 , is equal to the population mean .  

 The standard deviation of the sample means, x
 , (known as the standard error) is equal to 

the population standard deviation  divided by square root of the sample size n.  
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 The distribution of the sample mean x  is more normal than the distribution of individual 

observations x. 

The central limit theorem explains the shape of the sampling distribution. This theorem tells 

that for a population of any distribution, the distribution of the sample mean approaches a normal 

distribution as the sample size increases. The larger the sample size, the better the approximation. 

Based on this theorem, we can use the normal distribution for inferences about the mean for larger 

sample sizes, even if the original population is not normally distributed. Many students use this fact 

without understanding the underlying concept but by having the simulation students can digest the 

material and concepts to a better extent.  

Now we demonstrate the simulation of the sampling distribution using R. R is installed on the 

school computers which the students use to follow along during the class time. We begin by 

considering different population distributions and different sample sizes to observe the effects of the 

sample size and the shape of the original distribution on the sampling distribution of the mean. The 

uniform, chi-square, and normal populations and sample sizes of 10, 25, and 50 values are considered. 

These three populations have uniform, skewed, and bell shapes so each student can visualize how as 

the sample size increases as well and the sampling distribution approximates a normal distribution 

for different original shapes. This is one of the main points that we want to teach. These three 

populations, their shapes, and parameters were explained in previous lessons. The R functions are 

then introduced to generate random variants from these three populations. Table 1 gives the 

characteristics of the samples and the R functions. The value of n in R functions is the sample size. 

Table 1: Sample Characteristics 

Distribution Sample Sizes Mean Std Deviation  R Function 

Uniform (0, 100) 10, 25, 50 50 28.87 = runif(n, 0, 100) 

Normal (100, 10) 10, 25, 50 100 10 = rnorm(n, 100, 10) 

Chi-square (2) 10, 25, 50 2 2 = rchisq(n, 2) 

 

Now we show the R codes for generating random samples of 10 uniform random numbers 

and computing the sampling distribution of the mean. The following code segment generates 1000 

random samples sizes of 10 values  from the above uniform distribution and proceeds to compute the 

sample means. The R function runif is used to generate a random sample from the uniform 

distribution. The syntax of the function is runif(n, a, b). This function returns a random sample size 

of n values from the uniform distribution from a to b.  

> means <- c() 

> for(i in 1:1000) 

+  { 

+    y <- runif(10,0,100) 

+    means[i] <- mean(y) 

+  } 

> mean(means) 

[1] 49.75268 

> sd(means) 

[1] 9.164981 

> hist(means, main = "U(0,100), n=10") 

> qqnorm(means, main = “U(0,100), n=10”) 
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The for loop calculates means and also iterates 1000 times to generate 1000 random samples 

from the uniform distribution. The means vector holds these sample means. The runif(10,0,100) 

function generates a random sample size of 10 values from the uniform distribution from 0 to 100. 

This random sample is stored in vector y for the ith iteration of the for loop. The means[i] variable 

stores the corresponding sample mean for each sample for the ith iteration. The mean and sd 

commands compute the mean and standard deviation of 1000 sample means. Those 1000 sample 

means are then considered as the approximate sampling distribution of the mean to verify the validity 

of the properties the mean and standard deviation (standard error) of the sampling distribution. To 

study the shape of the sampling distribution, we create a histogram of the 1000 sample means using 

the hist command.  A better way of deciding if data is normally distributed is by creating a normal 

probability plot. In R, we can create a normal probability plot using qqnorm command. In normal 

probability plot, data are plotted against a theoretical normal distribution in such a way that the points 

should ideally form a straight line. Departures from a straight line indicate departures from normality. 

 

Similarly, we generate the approximate sampling distributions, histograms, and normal 

probability plots for all the cases we have considered in this lesson. Figure 1 and Figure 2 show 

histograms and normal probability plots for all the cases. In both figures, the first, second, and third 

column histograms and normal probability plots are created from sample means from uniform, 

normal, and chi-square distributions respectively.  The first, second, and third rows represent samples 

sizes 10, 25, and 50 values respectively. These histograms allow students to understand the meaning 

of the central limit theorem. Students will be able to visualize that as the sample size increases, the 

shape of the distribution is becoming more normal and therefore the sample means are less variable. 

For skewed data such as chi-square data, the sampling distribution does not approach a normal 

distribution for sample sizes as large as 50 values.  

 

To investigate the effect of the sample size on the shape of more skewed distributions, we 

consider the lognormal distribution. The lognormal distribution is one of the heavy tail distributions. 

The probability density function (pdf) of the lognormal distribution with μ = 0 and σ = 1 is created 

using R and shown in Figure 3. Figure 4 shows the histograms of sample means each from 1000 

random samples with sample sizes 50, 100, and 500 respectively. From  Figure 4, students understand 

that for more skewed distributions, sampling distribution does not approach a normal distribution in 

the case of sample sizes as large as 500. 

 

 In the case of a symmetrical uniform distribution, the sampling distribution can be 

approximated by a normal distribution for a smaller sample size such as 10 values. These facts can 

also be seen through normal probability plots. The effect of the sample size (n) on the standard error 

(σ/√𝑛) of the sampling distribution is also evident from the histograms. Students will notice that as 

sample size increases, the spread of the sampling distribution decreases. At the end of the lesson, 

students are able to comprehend the central limit theorem and understand the properties of the 

sampling distribution discussed in the class. The R codes used in this paper are given in the Appendix. 
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Uniform (n = 10,25,50) Normal (n = 10,25,50) Chi-Square (n = 10,25,50) 

   

   

   

Figure 1: Histograms for Sample Means 
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Uniform (n = 10,25,50) Normal (n = 10,25,50) Chi-Square (n = 10,25,50) 

   

   

   
Figure 2: Normal Probability Plots for Sample Means 

 
Figure 3: Lognormal Probability Density Function 
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Figure 4: Histograms for Sample Means from Lognormal Distribution 

4. SAMPLING DISTRIBUTION OF SAMPLE PROPORTION 

Sample proportion is commonly used in introductory statistics classes. In this section, we 

examine the sampling distribution of the sample proportion using the simulation. The population 

proportion, denoted by p, is obtained by taking the ratio of the number of elements in a population 

with a specific characteristic to the total number of elements in the population. The sample proportion, 

denoted by p̂ , gives a similar ratio for a sample. Just like the sample mean, the sample proportion is 

a random variable. The sample proportion can assume one of a large number of possible values 

depending on the sample. The probability distribution of the sample proportion is called the sampling 

distribution of the sample proportion. The mean of the sampling distribution is equal to the population 

proportion, p, and the standard deviation is given by
n

pp )1( 
. The central limit theorem for sample 

proportion approximates the sampling distribution by a normal distribution for a sufficiently large 

sample size. The sample size is considered to be sufficiently large if both np and n(1-p) are at least 

15. Students sometimes use these limits without understanding the meaning behind it. The following 

simulation process will give a better understanding of the meaning.   

We generate approximate sampling distributions and create histograms of the sample 

proportion p̂ for p = 0.1, 0.25, and 0.5, and n = 25, 50, 100, and 200. Figure 5 shows the histograms 

for these values of p and n. In the figure, the first, second and third column histograms represent p 

values 0.1, 0.25, and 0.5 respectively. The first, second, third and fourth rows represent sample sizes 

25, 50, 100, and 200 respectively. These histograms show that as sample size increases, the sampling 

distribution becomes more normal. For smaller values of p, larger sample is needed to approximate 

the sampling distribution by a normal distribution. It is easy to notice that both np and n(1-p) are 

larger for p values closer to 0.5. For p = 0.5, a sample size of n = 50 is enough to approximate the 

sampling distribution by a normal distribution. When p gets closer to 0.1 (or to 0.9), sample sizes as 

large as 100 may not be enough for the normal approximation. This simulation lesson allows student 

to understand the meaning of this concept. 
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p = 0.1 p = 0.25 p = 0.5 

 
Figure 1: Histigrams for Sample 
Proportions 

  

   

   

   Figure 5: Histograms for Sample Proportions 

 

5. STUDENT OPINION AND COMPARISON OF TWO METHODS 

This simulation approach was introduced in the probability and statistics course offered in the 

Mathematics Department. Most students taking this course are either sophomores or juniors majoring 

in Computer Information Systems, General Sciences, and other quantitative disciplines. These 

students have taken at least one computer programming course previously or have been exposed to 

some sort of computer logic, depending on their discipline. In Fall 2016, we introduced simulation 
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methods for the first time. In previous semesters, we taught the same material without using 

simulation methods. To evaluate the effectiveness of simulation methods on understanding the 

concepts, we compare Fall 2016 grades with the Spring 2016 grades of the test related to sampling 

distributions and central limit theorem. The test questions are not the same within the two semesters, 

but they are very similar. Table 2 gives the test scores statistics below: 

Table 2: Test Scores Statistics 

Class n Mean Median Std. Dev. 

Fall 2016 26 77.34 73 14.25 

Spring 2016 36 70.45 68 16.41 

 

Using R, the two sample t-test was performed on test scores to test the hypothesis that the Fall  

2016 class (using simulation methods)  performs better on average than the Spring 2016 class (not 

using  simulation methods).  The p-value produced by R was 0.0451. This p-value indicates that the 

Fall 2016 class performed better at a 0.05 significance level. 

The simulation approach was used by the Probability and Statistics class (Fall 2016) to teach 

the sampling distributions lessons. Afterwards, the following survey was conducted in class to 

measure students’ opinion on simulation methods. All 26 students answered the survey. We have not 

conducted the survey in previous semesters. Each question has three answering options, namely yes, 

no, and no opinion. As we mentioned earlier, these students were majoring in Computer Information 

Systems, sciences, or other quantitative disciplines. Most of them are either sophomores or juniors. 

Table 3 gives the summary of their responses. 

1. Method helps me to understand the concepts. 

2. Feeling like I am part of the discussion. 

3. Feeling comfortable taking part in the lesson. 

4. Visual representation of outcomes is useful in understanding. 

5. Recommend this approach to other students. 

We selected these questions to learn the students’ reflection on their own learning of the 

concepts and the opinion on simulation approach in presenting course material. As we mentioned 

earlier in this paper, the American Statistical Association’s GAISE report [7] has recommended 

several key points to improve student learning in statistics, including fostering active learning and the 

use of technology to explore concepts and analyze data. Answers to these survey questions will reveal 

students’ perception of the methods that help to achieve those goals. At the same time, we can identify 

the effectiveness of this approach in terms of students’ opinions.   

Table 3: Summary of Responses 

Question Yes No No Opinion 

1 94% 0% 6% 

2 52% 12% 36% 

3 58% 18% 24% 

4 85% 3% 12% 

5 76% 9% 15% 

The majority of the students answered yes to all five questions. Looking at the percentages, 

we observe that students believe they understand the concepts better with this  approach. A higher 

majority of students answered yes to questions 1, 4, and 5, which indicates that visual explanations 

of concepts enhance learning. To get a clear understanding about the percentages, we performed z-
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tests for each question. At a 5% significance level, we tested the claim that the proportion of students 

who answered yes to each question was significantly greater than 50%. Table 4 gives the p-values 

for each question. Notice from the p-values for questions 1, 4, and 5, the proportions of students 

answered yes are significantly greater than 50%. Even if we test against 60%, the proportions for 

these three questions are significantly greater. This is the same conclusion we made by looking at the 

row percentages. The proportions for questions 2 and 3 are not significantly greater than 50%. The 

instructor should motivate students to join the lesson enthusiatcally and make them more comfortable 

during the lesson. 

Table 4: p-values 

Question p-value 

Q1 0.000 

Q2 0.419 

Q3 0.204 

Q4 0.000 

Q5 0.001 

 

We have to take caution in that the sample sizes for the survey and assessment statistics 

provided are not large enough to make a firm judgment on the conclusion. We plan to use larger 

sample sizes in the future in order to give a comprehensive survey and to make a formal assessment.  

6. CONCLUSION 
Many students struggle with understanding statistics certain concepts such as sampling 

distributions. Simulations can be effective learning tools in helping students understand abstract 

concepts associated with repeated random processes. We have demonstrated the use of simulations 

by  using R to teach these topics. This is a very useful way to visualize and understand the sampling 

distribution and the central limit theorem. These simulation methods accommodate students who have 

a various background in mathematics. More empirical studies need to be conducted to measure the 

effectiveness of using simulations as a pedagogical tool.  
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Appendix 

The following R codes were used in the paper: 

Computing sampling distribution from normal distribution 

> means  <-  c() 

> for (i in 1:1000) 

+ { 

+   y <- rnorm(10,100,10) 

+   means[i] <- mean(y) 

+ } 

> mean(means) 

[1] 99.91111 

> sd(means) 

[1] 3.086187 

> hist(means, main = "N(100,10), n = 10") 

> qqnorm(means,main = "N(100,10), n = 10") 

 

Computing sampling distribution from Chi-square distribution  

> means <- c() 

> for(i in 1:1000) 

+  { 

+   y <- rchisq(10,2) 

+   means[i] <- mean(y) 

+  } 

> mean(means) 

[1] 2.002608 

> sd(means) 

[1] 0.6131161 

> hist(means, main = "Chi-square(2), n = 10") 

> qqnorm(means, main = "Chi-square(2), n = 10") 
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Computing sampling distribution from lognormal distribution  

> means <- c() 

> for(i in 1:1000) 

+  { 

+   y <- rlnorm(50,0,1) 

+   means[i] <- mean(y) 

+  } 

> hist(means, main = "Lognormal(0,1), n = 50") 

 

 

Creating lognormal pdf 

> x <- seq(from = 0, to = 10, by = 0.01) 

> y <- dlnorm(x,0,1) 

> plot(x,y, type = "l", xlab = "x", ylab = "f(x)",main =  

+ expression(paste("Lognormal pdf, ",mu, " = 0, ",sigma, " =    + 

1"))) 

 

 

Computing sampling distribution for proportion 

> phat <- c() 

> for(i in 1:1000) 

+  { 

+    phat[i] <- rbinom(1,25,0.1)/25 

+  } 

> hist(phat, xlab = expression(hat(p)), ylab = "frequency", 

+ main = "n = 25, p = 0.1") 

 


